ECN 710: Advanced Macroeconomics

Chapter 5: The Real Business Cycle model

Komla Avoumatsodo

University of Northern British Columbia
School of Economics

January 07, 2025

Komla Avoumatsodo ECON 710 January 07, 2025 1/49

Introduction

Komla Avoumatsodo ECON 710 January 07, 2025

Summary

- Major stylized facts (revisited)
- How modern Macro explains business cycles
- The Real Business Cycle model: baseline version
- Recitation: how to transform functions in levels into log differences
- Linearizing the model in the vicinity of the steady state
- Numerical simulation of the linearized model
- Readings

January 07, 2025

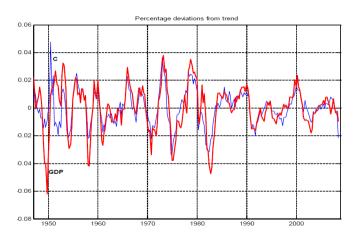


Figure: Percentage deviations from trend: GDP vs Consumption

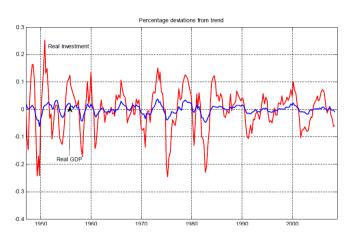


Figure: Percentage deviations from trend: GDP vs Investment

Komla Avoumatsodo

6/49

January 07, 2025

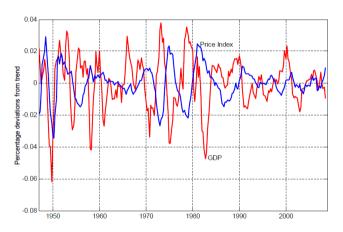


Figure: Percentage deviations from trend: GDP vs Price Index

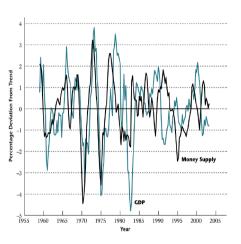


Figure: Percentage deviations from trend: GDP vs Money Supply

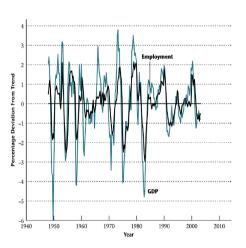


Figure: Percentage deviations from trend: GDP vs Employment

Komla Avoumatsodo ECON 710 January 07, 2025 8/s

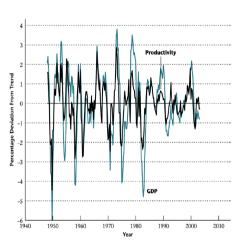


Figure: Percentage deviations from trend: GDP vs Productivity

Major stylized facts: Summary

From Stephen Williamson, Macroeconomics, Addison-Wesley, New York, 2005.

	Cyclicality	Lead/Lag	Variability Relative to GDP
Consumption	Procyclical	Coincident	Smaller
Investment	Procyclical	Coincident	Larger
Price Level	Countercyclical	Coincident	Smaller
Money Supply	Procyclical	Leading	Smaller
Employment	Procyclical	Lagging	Smaller
Real Wage	Procyclical	?	?
Average Labor Productivity	Procyclical	Coincident	Smaller

Figure: Percentage deviations from trend: GDP vs Productivity

Attention: price level as countercyclical and coincident is controversial!

How modern Macro explains business cycles

- Economies fluctuate over time
- Systematic facts needed to be explained:
 - Volatility
 - Comovements
 - Persistence (autocorrelation)
 - How expectations affect current economic decisions
- Dominant theoretical models:
 - Market clearing models: Real business cycles (RBC)
 - Non-Market clearing models: New Keynesian model (NKM)

RBC versus NKM

- A common framework:
 - Dynamic General Equilibrium
 - Stochastic shocks
 - Quantitative (computational)
 - Forward looking (Rational) Expectations
- A crucial divergence about information and prices:
 - Complete and flexible (RBC)
 - Incomplete and sticky (NKM)

The Real Business Cycle model: introduction

13/49

- The essence of the model:
 - Take the Solow growth model
 - Add shocks to Total Factor Productivity (TFP)
 - Add leisure to account for changes in hours of work
- Competitive equilibrium:
 - Households: preferences
 - Firms: technology
 - Government: policy decisions
- Real Factors: preferences, technology, policy decisions

January 07, 2025

TFP as the fundamental mechanism

- Shocks to Total Factor Productivity (TFP)
- Intertemporal substitution of labor and saving decisions
- Major result: fluctuations as an equilibrium outcome
 - Work harder when productivity is high
 - Save more when productivity is high

The Real Business Cycle model: baseline version

- Follow the baseline version by Hansen (1985)
- Seminal paper by Kydland and Prescott (1982)

Households: the problem

- Households maximize utility over time
- Utility depends on consumption (C) and hours worked (N)
- Intertemporal utility is discounted by a factor β

$$u() = \sum_{i=0}^{\infty} \beta^{i} u(C_{t+i}, N_{t+i})$$
 (1)

Households: with uncertainty

- Introducing uncertainty: future values of (C, N) are not known with certainty
- Expectations operator:

$$u() = E_t \left[\sum_{i=0}^{\infty} \beta^i u(C_{t+i}, N_{t+i}) \right]$$
 (2)

Households: utility function

18/49

• Specific form of utility:

$$u(C,N) = \frac{C^{1-\sigma}}{1-\sigma} - \theta N \tag{3}$$

$$\max E_t \left[\sum_{i=0}^{\infty} \beta^i \left(\frac{C_{t+i}^{1-\sigma}}{1-\sigma} - \theta N_{t+i} \right) \right]$$
 (4)

Firms: production

19/49

• Firms produce goods and services with the following production function:

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha} \tag{5}$$

Firms: accumulation of inputs

20/49

• Capital accumulation:

$$K_t = (1 - \delta)K_{t-1} + I_t \tag{6}$$

• TFP:

$$\ln A_t = (1 - \rho) \ln \bar{A} + \rho \ln A_{t-1} + \varepsilon_t \tag{7}$$

The social planner solution

21/49

- Solve for the equilibrium: decentralized and central planner equilibrium
- Social planner maximizes the objective function subject to a resource constraint

$$Y_t = C_t + I_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$
(8)

Komla Avoumatsodo ECON 710 January 07, 2025

The Lagrangian

• The Lagrangian:

$$\mathcal{L} = E_t \sum_{i=0}^{\infty} \beta^i \left[\left(\frac{C_{t+i}^{1-\sigma}}{1-\sigma} - \theta N_{t+i} \right) + \lambda_{t+i} \left(A_{t+i} K_{t+i-1}^{\alpha} N_{t+i}^{1-\alpha} + (1-\delta) K_{t+i-1} - C_{t+i} - K_{t+i} \right) \right]$$
(9)

The Lagrangian for two consecutive periods

- Simplify exposition: use $u(C_t, N_t)$ instead of $u = \frac{C_{t+i}^{1-\sigma}}{1-\sigma} \theta N_{t+i}$
- The L function for t and t+1 is:

$$\mathcal{L} = \dots + \beta^{0} \left[u(C_{t}, N_{t}) + \lambda_{t} \left(A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha} + (1-\delta) K_{t-1} - C_{t} - K_{t} \right) \right]$$

$$+ \beta^{1} \left[u(C_{t+1}, N_{t+1}) + \lambda_{t+1} \left(A_{t+1} K_{t}^{\alpha} N_{t+1}^{1-\alpha} + (1-\delta) K_{t} - C_{t+1} - K_{t+1} \right) \right]$$

$$+ \dots$$

$$(10)$$

• Now get the two first FOCs:

$$\frac{\partial L}{\partial C_t} = \beta^0 \left[u_C'(C_t) - \lambda_t \right] = 0 \tag{11}$$

$$\frac{\partial L}{\partial K_t} = \beta^0 \lambda_t + \beta^1 \lambda_{t+1} \left[\alpha \frac{A_{t+1} K_t^{\alpha - 1} N_{t+1}^{1 - \alpha}}{K_t} + (1 - \delta) \right] = 0$$
 (12)

The Lagrangian for two consecutive periods (cont.)

• Here is the \mathcal{L} function for t and t+1 again:

$$\mathcal{L} = ... + \beta^{0} \left[u(C_{t}, N_{t}) + \lambda_{t} \left(A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha} + (1-\delta) K_{t-1} - C_{t} - K_{t} \right) \right] + \beta^{1} \left[u(C_{t+1}, N_{t+1}) + \lambda_{t+1} \left(A_{t+1} (A_{t+1} (A_$$

• Now let's go for the two last FOCs:

$$\frac{\partial \mathcal{L}}{\partial N_t} = \beta^0 \left[u_N'(N_t) + \lambda_t (1 - \alpha) \frac{A_t K_{t-1}^{\alpha} N_t^{\alpha}}{N_t} \right] = 0$$
 (14)

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} = \beta^0 \left[A_t K_{t-1}^{\alpha} N_t^{1-\alpha} + (1-\delta) K_{t-1} - C_t - K_t \right] = 0 \tag{15}$$

Komla Avoumatsodo ECON 710 January 07, 2025

First Order Conditions (FOCs)

• The 4 FOCs can be written as:

$$\frac{\partial \mathcal{L}}{\partial C_t} = \beta^0 \left[u_C'(C_t) - \lambda_t \right] = 0 \tag{16}$$

$$\frac{\partial \mathcal{L}}{\partial K_t} = \beta^0 \lambda_t + \beta^1 \lambda_{t+1} \left[\alpha \frac{Y_{t+1}}{K_t} + (1 - \delta) \right] = 0$$
 (17)

$$\frac{\partial \mathcal{L}}{\partial N_t} = \beta^0 \left[u_N'(N_t) + \lambda_t (1 - \alpha) \frac{Y_t}{N_t} \right] = 0$$
 (18)

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} = \beta^0 \left[A_t K_{t-1}^{\alpha} N_t^{1-\alpha} + (1-\delta) K_{t-1} - C_t - K_t \right] = 0 \tag{19}$$

First Order Conditions (FOCs) simplified

• Insert $u'_{C}(C_{t}) = \lambda_{t}$, $u'_{C}(C_{t+1}) = \lambda_{t+1}$ into the FOC $\frac{\partial L}{\partial K_{t}}$, and get: $u'_{C}(C_{t}) = \beta \left[u'_{C}(C_{t+1}) R_{t+1} \right] \quad \text{(Euler equation)}$ (20)

• Bring expectations back. Eq. (Euler equation) with uncertainty:

$$E_t\left[u_C'(C_t)\right] = E_t\left[\beta\left(u_C'(C_{t+1})R_{t+1}\right)\right]$$
(21)

• The specific utility function can now be applied:

$$u_C'(C_{t+i}) = \frac{\partial u}{\partial C_{t+i}} = C_{t+i}^{-\sigma}$$
(22)

• The Euler equation appears as:

$$C_t^{-\sigma} = \beta E_t \left[C_{t+1}^{-\sigma} R_{t+1} \right] \tag{23}$$

Komla Avoumatsodo ECON 710 January 07, 2025

More on FOCs

• Notice that from the FOCs $\frac{\partial L}{\partial C_t} = 0$, $\frac{\partial L}{\partial N_t} = 0$ we can get another result by cancelling out λ_t :

$$\beta^{t} \left[u_{N}'(N_{t}) - \lambda_{t}(1 - \alpha) \frac{Y_{t}}{N_{t}} \right] = 0$$
 (24)

• As $\beta^t \neq 0$, therefore:

$$u_N'(N_t) - \lambda_t (1 - \alpha) \frac{Y_t}{N_t} = 0$$
(25)

• But as $u'_N(N_t) = \theta$, and $\lambda_t = u'_C(C_t)$, we get:

$$\frac{Y_t}{N_t} = \frac{\theta}{1 - \alpha} C_t^{\sigma} \tag{26}$$

The maximization of utility: 4 equations x 5 variables

• The FOCs give us 3 equations involving 5 variables $(Y_{t+i}, N_{t+i}, C_{t+i}, R_{t+i}, K_{t+i})$:

$$\frac{Y_t}{N_t} = \frac{\theta}{1 - \alpha} C_t^{\sigma} \tag{27}$$

$$C_t^{-\sigma} = \beta E_t \left[C_{t+1}^{-\sigma} R_{t+1} \right]$$
 (28)

$$R_{t+1} = \alpha \frac{Y_{t+1}}{K_t} + (1 - \delta) \tag{29}$$

- The system is indeterminate. Two further equations are needed:
 - The production function
 - The capital accumulation
- The system is indeterminate. Two further equations are needed:
 - The production function
 - The capital accumulation
- But these two bring another two variables into the system (A_t, I_t) , which requires two further equations:
 - The national accounting identity

A nonlinear model: summary

• Our seven equations are:

$$R_{t+1} = \alpha \left(\frac{Y_{t+1}}{K_t} \right) + (1 - \delta) \tag{30}$$

$$C_t^{-\sigma} = \beta E_t \left[C_{t+1}^{-\sigma} R_{t+1} \right] \tag{31}$$

$$\frac{Y_t}{N_t} = \frac{\theta}{1 - \alpha} C_t^{\sigma} \tag{32}$$

$$K_t = (1 - \delta)K_{t-1} + I_t \tag{33}$$

$$Y_t = A_t K_{t-1}^{\alpha} N_t^{1-\alpha} \tag{34}$$

$$C_t + I_t = Y_t \tag{35}$$

$$\ln A_t = (1 - \rho) \ln \bar{A} + \rho \ln A_{t-1} + \varepsilon_t \tag{36}$$

- A nonlinear system of stochastic difference equations (some of them are nonlinear)
- Solutions are extremely difficult (if not impossible) to be obtained for these systems
- A trick: linearize the system in the vicinity of the steady state. Widely used and very useful in

Linearization: what is it?

- We shall recall a number of points:
 - The system has 7 endogenous variables $(Y_{t+i}, N_{t+i}, C_{t+i}, R_{t+i}, K_{t+i}, A_{t+i}, I_{t+i})$
 - In steady state, for any variable v_t , we get: $v_t = v_{t+1} = \bar{v}$
 - The natural way to linearize an equation is to apply logs, or $\Delta \log$ (first difference in logs)
 - Remember that $\Delta \log$ is approximately equal to a growth rate
- We will apply $\Delta \log$ to our system
- Linearization may look very complicated, but in fact it's extremely simple
- We only need to know how to transform the equations of the model into $\Delta \log$ functions

Recitation: how to transform functions in levels into log difference.

- Transforming functions into log-differences: first case
- A linear function: $Y_t = 2X_t$. Apply logs to two consecutive periods:

$$ln Y_t = ln 2 + ln X_t$$
(37)

$$\ln Y_{t+1} = \ln 2 + \ln X_{t+1} \tag{38}$$

• Therefore, the first difference of logs is:

$$\ln Y_{t+1} - \ln Y_t = (\ln 2 + \ln X_{t+1}) - (\ln 2 + \ln X_t) = \ln X_{t+1} - \ln X_t$$
(39)

• In this kind of function, the growth rate of Y, let's call it y, is equal to the growth rate of X, x:

$$y = x \tag{40}$$

• Don't forget: we use small letters to express the growth rate of a variable

Transforming functions into log-differences: second case

32/49

• A linear function of two independent variables: $Y_t = 2X_tZ_t$. Apply logs to two consecutive periods, and you will get:

$$y = x + z \tag{41}$$

• Prove this result yourself.

Komla Avoumatsodo ECON 710 January 07, 2025

Transforming functions into log-differences: third case

• A power function: $Y_t = 2X_tZ_t^3$. Apply logs:

$$\ln Y_t = \ln 2 + \ln X_t + 3 \ln Z_t \tag{42}$$

$$\ln Y_{t+1} = \ln 2 + \ln X_{t+1} + 3 \ln Z_{t+1} \tag{43}$$

• Therefore, the first difference of logs is:

$$\ln Y_{t+1} - \ln Y_t = (\ln 2 + \ln X_{t+1} + 3 \ln Z_{t+1}) - (\ln 2 + \ln X_t + 3 \ln Z_t) = \ln X_{t+1} - \ln X_t + 3(\ln Z_{t+1} - \ln Z_t)$$
(44)

• So this power function can be written in $\Delta \log$ as:

$$y = x + 3z \tag{45}$$

Komla Avoumatsodo ECON 710 January 07, 2025

Transforming functions into log-differences: fourth case

• The last function we need to consider is an additive function like $Y_{t+1} = X_{t+1} + Z_{t+1}$. Here we can't apply logs. But there is another way:

$$\frac{Y_{t+1}}{Y_t} = \frac{X_{t+1}}{X_t} \frac{X_t}{Y_t} + \frac{Z_{t+1}}{Z_t} \frac{Z_t}{Y_t}$$
 (46)

• Now apply the following:

$$\frac{Y_{t+1}}{Y_t} = 1 + y, \quad \frac{X_{t+1}}{X_t} = 1 + x, \quad \frac{Z_{t+1}}{Z_t} = 1 + z$$
 (47)

• The previous equation can be written as:

$$(1+y)Y_t = (1+x)X_t + (1+z)Z_t$$
(48)

• Divide through by Y_t and get:

$$1 + y = (1+x)\frac{X_t}{Y_t} + (1+z)\frac{Z_t}{Y_t}$$
(49)

Transforming functions into log-differences: fourth case (cont.)

• Notice that the previous equation can be written as:

$$1 + y = \left(\frac{X_t}{Y_t} + \frac{Z_t}{Y_t}\right) \tag{50}$$

• Notice that the previous equation can be written as:

$$1 + y = \left(\frac{X_t}{Y_t} + \frac{Z_t}{Y_t}\right) + x\frac{X_t}{Y_t} + z\frac{Z_t}{Y_t}$$

$$\tag{51}$$

• Therefore, an additive function like $Y_{t+1} = X_{t+1} + Z_{t+1}$ can be expressed as:

$$y = x\frac{X_t}{Y_t} + z\frac{Z_t}{Y_t} \tag{52}$$

• Notice that if Z = 2, its growth rate were z = 0, and we would get:

$$y = x \frac{X_t}{Y_t} \tag{53}$$

Komla Avoumatsodo ECON 710 January 07, 2025

Transforming functions into log-differences: summary

36/49

• Let's summarize our results:

Variables in levels	Variables in ∆ log	
$Y_t = 2X_t$	y = x	
$Y_t = 2X_tZ_t$	y = x + z	
$Y_t = 2X_t Z_t^3$	y = x + 3z	
$Y_{t+1} = X_{t+1} + Z_{t+1}$	$y = x \frac{X_t}{Y_t} + z \frac{Z_t}{Y_t}$	
$Y_{t+1} = X_{t+1} + 2$	$y = x \frac{X_t}{Y_t}$	

• Transforming our system into a linear one:

$$C_t^{-\sigma} = \beta E_t \left[C_{t+1}^{-\sigma} R_{t+1} \right], \quad c_t = E_t c_{t+1} - \frac{1}{\sigma} E_t r_{t+1}$$
 (54)

$$\frac{Y_t}{N_t} = \frac{\theta}{1 - \alpha} C_t^{\sigma}, \quad n_t = y_t - \sigma c_t \tag{55}$$

$$K_t = (1 - \delta)K_{t-1} + I_t, \quad k_t = (1 - \delta)k_{t-1} + i_t$$
 (56)

$$Y_t = A_t K_{t-1}^{\alpha} N_t^{1-\alpha}, \quad y_t = a_t + \alpha k_{t-1} + (1-\alpha) n_t$$
 (57)

$$C_t + I_t = Y_t, \quad y_t = c_t \frac{C_t}{Y_t} + i_t \frac{I_t}{Y_t}$$

$$(58)$$

$$R_t = \alpha \left(\frac{Y_t}{K_{t-1}} \right) + (1 - \delta), \quad r_t = \alpha \left(\frac{R_t Y_t}{K_{t-1}} \right) (y_t - k_{t-1})$$
 (59)

$$\ln A_t = (1 - \rho) \ln \bar{A} + \rho \ln A_{t-1} + \varepsilon_t, \quad a_t = \rho a_{t-1} + \varepsilon_t$$
(60)

Linearization: one example

38/49

• One example. Let us solve the less simple equation of the whole set:

$$R_t = \alpha \left(\frac{Y_t}{K_{t-1}} \right) + (1 - \delta) \tag{61}$$

• Simplify the previous equation by assuming that $Z_t = \frac{Y_t}{K_{t-1}}$, and $\mu = 1 - \delta$:

$$R_t = \alpha Z_t + \mu \tag{62}$$

• Now apply the rule discussed above and get:

$$r_t = \alpha z_t \frac{Z_t}{R_t} \tag{63}$$

• But as $z_t = y_t - k_{t-1}$:

$$r_t = \alpha \left(\frac{R_t Y_t}{K_{t-1}}\right) (y_t - k_{t-1}) \tag{64}$$

Determining the steady state

- We can determine the values of K, C, Y, I, R associated with the steady state.
- Remember that in the vicinity of the steady state, for any x_t , we get $x_t = x_{t+1} = \bar{x}$, then $\frac{x_t}{x_{t+1}} = 1$.
- Let's start with the Euler equation, as $C_t = C_{t+1} = \bar{C}$, then:

$$C_t^{-\sigma} = \beta E_t \left[C_{t+1}^{-\sigma} R_{t+1} \right] \tag{65}$$

• If $\bar{R} = \beta^{-1}$, then from the production function:

$$\bar{R} = \alpha \left(\frac{Y}{\bar{K}}\right) + (1 - \delta) \tag{66}$$

• Therefore:

$$\frac{\bar{Y}}{\bar{K}} = \frac{\beta^{-1} - (1 - \delta)}{\alpha} \tag{67}$$

Determining the steady state (continued)

• As we know that $\bar{R}=\beta^{-1}$ and $\frac{\bar{Y}}{\bar{K}}=\frac{\beta^{-1}-(1-\delta)}{\alpha}$, then: $\alpha \bar{R}\frac{\bar{Y}}{\bar{K}}=\frac{1}{\beta(1-\delta)}$

$$\alpha \bar{R} \frac{\ddot{\bar{Y}}}{\bar{K}} = \frac{1}{\beta(1-\delta)} \tag{68}$$

• Next, from the capital accumulation equation:

$$\vec{K} = (1 - \delta)\vec{K} + \vec{l} \tag{69}$$

• Therefore:

$$\frac{\bar{l}}{\bar{K}} = \delta \tag{70}$$

• And:

$$\frac{\bar{I}}{\bar{Y}} = \frac{\bar{I}}{\bar{K}} \frac{\bar{K}}{\bar{Y}} = \phi, \quad \text{for simplicity with} \quad \phi = \frac{\alpha \delta}{\beta^{-1} - (1 - \delta)}$$
 (71)

• Finally:

Summary: our linearized model in the vicinity of the steady state

(75)

(78)

• Our system of stochastic linear difference equations with rational expectations looks like:

$$c_t = E_t c_{t+1} - \frac{1}{\sigma} E_t r_{t+1} \tag{74}$$

$$n_t = y_t - \sigma c_t$$

$$k_t = (1 - \delta)k_{t-1} + \delta i_t \tag{76}$$

$$y_t = a_t + \alpha k_{t-1} + (1 - \alpha) n_t$$
 (77)

$$y_t = c_t(1-\phi) + \phi i_t$$

$$r_t = \left[\frac{1}{\beta(1-\delta)}\right] (y_t - k_{t-1}) \tag{79}$$

$$a_t = \rho a_{t-1} + \varepsilon_t \tag{80}$$

• With
$$\phi = \frac{\alpha \delta}{\beta^{-1} - (1 - \delta)}$$
.

Numerical simulation of the linearized model

- Now we can give numbers to the parameters, take the model to the computer and simulate the impact of shocks upon the endogenous variables.
- We use a routine for Matlab developed by Harald Uhlig, now at the University of Chicago.
- Calibrate the model: $\alpha = 0.4$, $\delta = 0.012$, $\rho = 0.95$, $\beta = 0.987$, $\sigma_e = 0.07$, $\sigma = 1$ and $\bar{N} = 1/3$ (steady state employment is a third of total time endowment).
- See next figures.

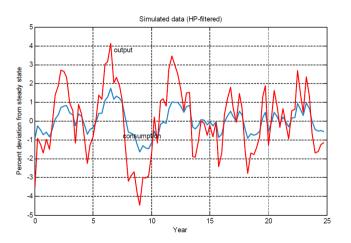


Figure: Simulated data (HP-filtered): Output vs Consumption

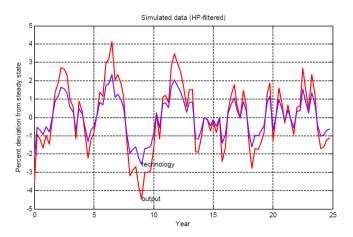


Figure: Simulated data (HP-filtered): Output vs TFP

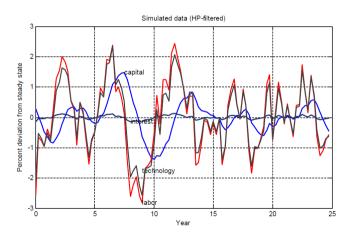


Figure: Simulated data (HP-filtered): Capital, Interest Rate, TFP and Labor

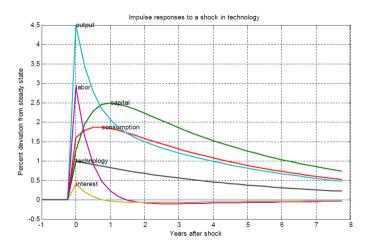


Figure: Impulse responses to a shock in technology

Komla Avoumatsodo ECON 710 January 07, 2025 46/49

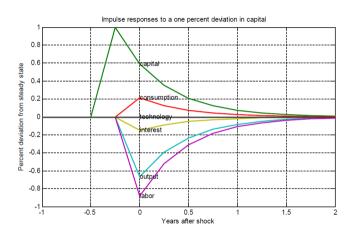


Figure: Impulse responses to a one percent deviation in capital

The RBC model: shortcomings

48/49

- Reproduces relatively well several stylized facts of business cycles:
 - Output is nearly as volatile as in the data.
 - Consumption is less volatile than output.
 - Investment is more volatile.
 - Persistence is high.
- It seems OK with covariances.
- Serious problems:
 - Variability of hours of work is understated as well as consumption.
 - Real wages and interest rates are highly procyclical (not so in the data).
 - Where do the negative shocks come from?
 - No role for monetary policy.
 - Fiscal policy is of little help due to Ricardian equivalence.

Readings

49/49

- Eric Sims (2017). Graduate Macro Theory II: The Real Business Cycle Model, University of Notre Dame, Spring 2017.
- Dirk Krueger (2007). "Quantitative Macroeconomics: An Introduction" Unpublished manuscript, Department of Economics University of Pennsylvania.