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1 Introduction
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Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Consumption
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Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Investment

Komla Avoumatsodo ECON 710 January 07, 2025 5 / 49



Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Price Index
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Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Money Supply
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Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Employment
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Major stylized facts (revisited)

Figure: Percentage deviations from trend: GDP vs Productivity
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Major stylized facts : Summary

From Stephen Williamson, Macroeconomics, Addison-Wesley, New York, 2005.

Figure: Percentage deviations from trend: GDP vs Productivity

Attention: price level as countercyclical and coincident is controversial!
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How modern Macro explains business cycles

Economies fluctuate over time
Systematic facts needed to be explained:

Volatility
Comovements
Persistence (autocorrelation)
How expectations affect current economic decisions

Dominant theoretical models:
Market clearing models: Real business cycles (RBC)
Non-Market clearing models: New Keynesian model (NKM)
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RBC versus NKM

A common framework:
Dynamic General Equilibrium
Stochastic shocks
Quantitative (computational)
Forward looking (Rational) Expectations

A crucial divergence about information and prices:
Complete and flexible (RBC)
Incomplete and sticky (NKM)
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The Real Business Cycle model: introduction

The essence of the model:
Take the Solow growth model
Add shocks to Total Factor Productivity (TFP)
Add leisure to account for changes in hours of work

Competitive equilibrium:
Households: preferences
Firms: technology
Government: policy decisions

Real Factors: preferences, technology, policy decisions
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TFP as the fundamental mechanism

Shocks to Total Factor Productivity (TFP)
Intertemporal substitution of labor and saving decisions
Major result: fluctuations as an equilibrium outcome

Work harder when productivity is high
Save more when productivity is high
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The Real Business Cycle model: baseline version

Follow the baseline version by Hansen (1985)
Seminal paper by Kydland and Prescott (1982)
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Households: the problem

Households maximize utility over time
Utility depends on consumption (C) and hours worked (N)
Intertemporal utility is discounted by a factor β

u() =
∞

∑
i=0

β
iu(Ct+i ,Nt+i ) (1)
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Households: with uncertainty

Introducing uncertainty: future values of (C, N) are not known with certainty
Expectations operator:

u() = Et

[
∞

∑
i=0

β
iu(Ct+i ,Nt+i )

]
(2)
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Households: utility function

Specific form of utility:

u(C ,N) =
C 1−σ

1−σ
−θN (3)

maxEt

[
∞

∑
i=0

β
i

(
C 1−σ

t+i

1−σ
−θNt+i

)]
(4)
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Firms: production

Firms produce goods and services with the following production function:
Yt = AtK

α
t N

1−α
t (5)
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Firms: accumulation of inputs

Capital accumulation:
Kt = (1−δ )Kt−1+ It (6)

TFP:
lnAt = (1−ρ) ln Ā+ρ lnAt−1+ εt (7)
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The social planner solution

Solve for the equilibrium: decentralized and central planner equilibrium
Social planner maximizes the objective function subject to a resource constraint

Yt = Ct + It = AtK
α
t N

1−α
t (8)
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The Lagrangian

The Lagrangian:

L = Et

∞

∑
i=0

β
i

[(
C 1−σ

t+i

1−σ
−θNt+i

)
+λt+i

(
At+iK

α
t+i−1N

1−α

t+i +(1−δ )Kt+i−1−Ct+i −Kt+i

)]
(9)
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The Lagrangian for two consecutive periods

Simplify exposition: use u(Ct ,Nt) instead of u =
C1−σ

t+i
1−σ

−θNt+i

The L function for t and t+1 is:

L = ...+β
0
[
u(Ct ,Nt)+λt

(
AtK

α
t−1N

1−α
t +(1−δ )Kt−1−Ct −Kt

)]
+β

1
[
u(Ct+1,Nt+1)+λt+1

(
At+1K

α
t N

1−α
t+1 +(1−δ )Kt −Ct+1−Kt+1

)]
+ ... (10)

Now get the two first FOCs:
∂L

∂Ct
= β

0
[
u′C (Ct)−λt

]
= 0 (11)

∂L

∂Kt
= β

0
λt +β

1
λt+1

[
α
At+1K

α−1
t N1−α

t+1

Kt
+(1−δ )

]
= 0 (12)
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The Lagrangian for two consecutive periods (cont.)

Here is the L function for t and t+1 again:
L = ...+β

0
[
u(Ct ,Nt)+λt

(
AtK

α
t−1N

1−α
t +(1−δ )Kt−1−Ct −Kt

)]
+β

1
[
u(Ct+1,Nt+1)+λt+1

(
At+1K

α
t N

1−α
t+1 +(1−δ )Kt −Ct+1−Kt+1

)]
+...

(13)

Now let’s go for the two last FOCs:
∂L

∂Nt
= β

0

[
u′N(Nt)+λt(1−α)

AtK
α
t−1N

α
t

Nt

]
= 0 (14)

∂L

∂λt
= β

0
[
AtK

α
t−1N

1−α
t +(1−δ )Kt−1−Ct −Kt

]
= 0 (15)
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First Order Conditions (FOCs)

The 4 FOCs can be written as:
∂L

∂Ct
= β

0
[
u′C (Ct)−λt

]
= 0 (16)

∂L

∂Kt
= β

0
λt +β

1
λt+1

[
α
Yt+1

Kt
+(1−δ )

]
= 0 (17)

∂L

∂Nt
= β

0

[
u′N(Nt)+λt(1−α)

Yt

Nt

]
= 0 (18)

∂L

∂λt
= β

0
[
AtK

α
t−1N

1−α
t +(1−δ )Kt−1−Ct −Kt

]
= 0 (19)
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First Order Conditions (FOCs) simplified

Insert u′C (Ct) = λt , u′C (Ct+1) = λt+1 into the FOC ∂L
∂Kt

, and get:

u′C (Ct) = β
[
u′C (Ct+1)Rt+1

]
(Euler equation) (20)

Bring expectations back. Eq. (Euler equation) with uncertainty:
Et

[
u′C (Ct)

]
= Et

[
β
(
u′C (Ct+1)Rt+1

)]
(21)

The specific utility function can now be applied:

u′C (Ct+i ) =
∂u

∂Ct+i
= C−σ

t+i (22)

The Euler equation appears as:
C−σ
t = βEt

[
C−σ
t+1Rt+1

]
(23)
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More on FOCs

Notice that from the FOCs ∂L
∂Ct

= 0, ∂L
∂Nt

= 0 we can get another result by cancelling out λt :

β
t

[
u′N(Nt)−λt(1−α)

Yt

Nt

]
= 0 (24)

As β t ̸= 0, therefore:

u′N(Nt)−λt(1−α)
Yt

Nt
= 0 (25)

But as u′N(Nt) = θ , and λt = u′C (Ct), we get:
Yt

Nt
=

θ

1−α
Cσ
t (26)
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The maximization of utility: 4 equations x 5 variables

The FOCs give us 3 equations involving 5 variables (Yt+i , Nt+i , Ct+i , Rt+i , Kt+i ):
Yt

Nt
=

θ

1−α
Cσ
t (27)

C−σ
t = βEt

[
C−σ
t+1Rt+1

]
(28)

Rt+1 = α
Yt+1

Kt
+(1−δ ) (29)

The system is indeterminate. Two further equations are needed:
The production function
The capital accumulation

The system is indeterminate. Two further equations are needed:
The production function
The capital accumulation

But these two bring another two variables into the system (At , It ), which requires two further
equations:

The national accounting identity
The TFP process

Now the system can be solved: we have a system of 7 equations with 7 unknowns (Yt+i , Nt+i ,
Ct+i , Rt+i , Kt+i , At+i , It+i )
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A nonlinear model: summary

Our seven equations are:

Rt+1 = α

(
Yt+1

Kt

)
+(1−δ ) (30)

C−σ
t = βEt

[
C−σ
t+1Rt+1

]
(31)

Yt

Nt
=

θ

1−α
Cσ
t (32)

Kt = (1−δ )Kt−1+ It (33)
Yt = AtK

α
t−1N

1−α
t (34)

Ct + It = Yt (35)
lnAt = (1−ρ) ln Ā+ρ lnAt−1+ εt (36)

A nonlinear system of stochastic difference equations (some of them are nonlinear)
Solutions are extremely difficult (if not impossible) to be obtained for these systems
A trick: linearize the system in the vicinity of the steady state. Widely used and very useful in
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Linearization: what is it?

We shall recall a number of points:
The system has 7 endogenous variables (Yt+i , Nt+i , Ct+i , Rt+i , Kt+i , At+i , It+i )
In steady state, for any variable vt , we get: vt = vt+1 = v̄
The natural way to linearize an equation is to apply logs, or ∆log (first difference in logs)
Remember that ∆log is approximately equal to a growth rate

We will apply ∆log to our system
Linearization may look very complicated, but in fact it’s extremely simple
We only need to know how to transform the equations of the model into ∆log functions
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Recitation: how to transform functions in levels into log differences

Transforming functions into log-differences: first case
A linear function: Yt = 2Xt . Apply logs to two consecutive periods:

lnYt = ln2+ lnXt (37)

lnYt+1 = ln2+ lnXt+1 (38)

Therefore, the first difference of logs is:
lnYt+1− lnYt = (ln2+ lnXt+1)− (ln2+ lnXt) = lnXt+1− lnXt (39)

In this kind of function, the growth rate of Y , let’s call it y , is equal to the growth rate of X , x :
y = x (40)

Don’t forget: we use small letters to express the growth rate of a variable
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Transforming functions into log-differences: second case

A linear function of two independent variables: Yt = 2XtZt . Apply logs to two consecutive
periods, and you will get:

y = x+ z (41)

Prove this result yourself.
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Transforming functions into log-differences: third case

A power function: Yt = 2XtZ
3
t . Apply logs:
lnYt = ln2+ lnXt +3lnZt (42)

lnYt+1 = ln2+ lnXt+1+3lnZt+1 (43)

Therefore, the first difference of logs is:
lnYt+1− lnYt =(ln2+lnXt+1+3lnZt+1)−(ln2+lnXt+3lnZt)= lnXt+1− lnXt+3(lnZt+1− lnZt)

(44)

So this power function can be written in ∆log as:
y = x+3z (45)
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Transforming functions into log-differences: fourth case

The last function we need to consider is an additive function like Yt+1 = Xt+1+Zt+1. Here we
can’t apply logs. But there is another way:

Yt+1

Yt
=

Xt+1

Xt

Xt

Yt
+

Zt+1

Zt

Zt

Yt
(46)

Now apply the following:
Yt+1

Yt
= 1+ y ,

Xt+1

Xt
= 1+ x ,

Zt+1

Zt
= 1+ z (47)

The previous equation can be written as:
(1+ y)Yt = (1+ x)Xt +(1+ z)Zt (48)

Divide through by Yt and get:

1+ y = (1+ x)
Xt

Yt
+(1+ z)

Zt

Yt
(49)
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Transforming functions into log-differences: fourth case (cont.)

Notice that the previous equation can be written as:

1+ y =

(
Xt

Yt
+

Zt

Yt

)
(50)

Notice that the previous equation can be written as:

1+ y =

(
Xt

Yt
+

Zt

Yt

)
+ x

Xt

Yt
+ z

Zt

Yt
(51)

Therefore, an additive function like Yt+1 = Xt+1+Zt+1 can be expressed as:

y = x
Xt

Yt
+ z

Zt

Yt
(52)

Notice that if Z = 2, its growth rate were z = 0, and we would get:

y = x
Xt

Yt
(53)
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Transforming functions into log-differences: summary

Let’s summarize our results:

Variables in levels Variables in ∆log
Yt = 2Xt y = x
Yt = 2XtZt y = x+ z
Yt = 2XtZ

3
t y = x+3z

Yt+1 = Xt+1+Zt+1 y = x Xt
Yt

+ z Zt
Yt

Yt+1 = Xt+1+2 y = x Xt
Yt
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Linearizing the model in the vicinity of the steady state

Transforming our system into a linear one:

C−σ
t = βEt

[
C−σ
t+1Rt+1

]
, ct = Etct+1−

1

σ
Etrt+1 (54)

Yt

Nt
=

θ

1−α
Cσ
t , nt = yt −σct (55)

Kt = (1−δ )Kt−1+ It , kt = (1−δ )kt−1+ it (56)
Yt = AtK

α
t−1N

1−α
t , yt = at +αkt−1+(1−α)nt (57)

Ct + It = Yt , yt = ct
Ct

Yt
+ it

It
Yt

(58)

Rt = α

(
Yt

Kt−1

)
+(1−δ ), rt = α

(
RtYt

Kt−1

)
(yt −kt−1) (59)

lnAt = (1−ρ) ln Ā+ρ lnAt−1+ εt , at = ρat−1+ εt (60)

Notice that now our system is: 7 equations, 12 unknowns: (c , r , n, y , k , i , a) plus (K , C , Y , I ,
R).
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Linearization: one example

One example. Let us solve the less simple equation of the whole set:

Rt = α

(
Yt

Kt−1

)
+(1−δ ) (61)

Simplify the previous equation by assuming that Zt =
Yt

Kt−1
, and µ = 1−δ :

Rt = αZt +µ (62)

Now apply the rule discussed above and get:

rt = αzt
Zt

Rt
(63)

But as zt = yt −kt−1:

rt = α

(
RtYt

Kt−1

)
(yt −kt−1) (64)
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Determining the steady state

We can determine the values of K , C , Y , I , R associated with the steady state.
Remember that in the vicinity of the steady state, for any xt , we get xt = xt+1 = x̄ , then xt

xt+1
= 1.

Let’s start with the Euler equation, as Ct = Ct+1 = C̄ , then:
C−σ
t = βEt

[
C−σ
t+1Rt+1

]
(65)

If R̄ = β−1, then from the production function:

R̄ = α

(
Ȳ

K̄

)
+(1−δ ) (66)

Therefore:
Ȳ

K̄
=

β−1− (1−δ )

α
(67)
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Determining the steady state (continued)

As we know that R̄ = β−1 and Ȳ
K̄
= β−1−(1−δ )

α
, then:

αR̄
Ȳ

K̄
=

1

β (1−δ )
(68)

Next, from the capital accumulation equation:
K̄ = (1−δ )K̄ + Ī (69)

Therefore:
Ī

K̄
= δ (70)

And:
Ī

Ȳ
=

Ī

K̄

K̄

Ȳ
= φ , for simplicity with φ =

αδ

β−1− (1−δ )
(71)

Finally:
C̄

Ȳ
= 1−

(72)

Finally:
C̄

Ȳ
= 1− Ī

Ȳ
= 1−φ (73)
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Summary: our linearized model in the vicinity of the steady state

Our system of stochastic linear difference equations with rational expectations looks like:

ct = Etct+1−
1

σ
Etrt+1 (74)

nt = yt −σct (75)

kt = (1−δ )kt−1+δ it (76)

yt = at +αkt−1+(1−α)nt (77)

yt = ct(1−φ)+φ it (78)

rt =

[
1

β (1−δ )

]
(yt −kt−1) (79)

at = ρat−1+ εt (80)

With φ = αδ

β−1−(1−δ )
.
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Numerical simulation of the linearized model

Now we can give numbers to the parameters, take the model to the computer and simulate the
impact of shocks upon the endogenous variables.
We use a routine for Matlab developed by Harald Uhlig, now at the University of Chicago.
Calibrate the model: α = 0.4, δ = 0.012, ρ = 0.95, β = 0.987, σe = 0.07, σ = 1 and N̄ = 1/3
(steady state employment is a third of total time endowment).
See next figures.
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Output vs consumption

Figure: Simulated data (HP-filtered): Output vs Consumption
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Output vs TFP

Figure: Simulated data (HP-filtered): Output vs TFP
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Capital, interest rate, TFP and labor

Figure: Simulated data (HP-filtered): Capital, Interest Rate, TFP and Labor
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Impulse response functions: A positive technological shock

Figure: Impulse responses to a shock in technology
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Impulse response functions: A one percent increase in capital

Figure: Impulse responses to a one percent deviation in capital
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The RBC model: shortcomings

Reproduces relatively well several stylized facts of business cycles:
Output is nearly as volatile as in the data.
Consumption is less volatile than output.
Investment is more volatile.
Persistence is high.

It seems OK with covariances.
Serious problems:

Variability of hours of work is understated as well as consumption.
Real wages and interest rates are highly procyclical (not so in the data).
Where do the negative shocks come from?
No role for monetary policy.
Fiscal policy is of little help due to Ricardian equivalence.
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Readings

Eric Sims (2017). Graduate Macro Theory II: The Real Business Cycle Model, University of
Notre Dame, Spring 2017.
Dirk Krueger (2007). ”Quantitative Macroeconomics: An Introduction” Unpublished
manuscript, Department of Economics University of Pennsylvania.
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