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1 Foundations of the Neoclassical Model

In the Solow model, the savings rate is constant and exogenous. In the neoclassical growth
model, also known as the Ramsey model or the Cass-Koopmans model, the preferences (util-
ities) of households are clearly specified. Households choose consumption and investment
optimally to maximize their utility. The key difference between the Solow model and the neo-
classical growth model is the endogenous treatment of savings and labor supply.

2 Preferences

In the neoclassical growth model, we consider a finite horizon and discrete time. The household
derives utility from consumption and leisure. Let ct ≡Ct/Lt and zt be per capita consumption
and leisure at time t, where Ct is total consumption and Lt is the population size.

Preferences are defined over consumption and leisure paths, x = {xt}∞
t=0, with xt = (ct ,zt),

and are represented by the utility function:

U : X∞ → R
x 7→ U (x0,x1, . . .)

where X is the domain of xt and is typically R+× [0,1].
Preferences are said to be recursive if there exists a function W : X×R→R (often called a

utility aggregator) such that, for any {xt}∞
t=0,

U (x0,x1, . . .) =W [x0,U (x1,x2, . . .)].

Thus, each {xt}∞
t=0 induces a utility path {Ut}∞

t=0 according to the following recursion:

Ut =W (xt ,Ut+1).

Preferences are additively separable if there exist functions vt such that:

U (x) =
∞

∑
t=0

vt(xt).

where vt(xt) represents the utility at period 0 from consumption and leisure at period t.
We will assume that preferences are recursive and additively separable. This implies that

the utility aggregator W must be linear in its second argument. Therefore, there exists a function
U : R→ R and a scalar β ∈ R such that:

W (x,y) =U(x)+βy.
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This implies that:
Ut =U(xt)+βUt+1,

or equivalently,

Ut =
∞

∑
τ=0

β
τU(xt+τ).

Here, β ∈ (0,1) is the discount factor and U is called the instantaneous utility function.
We assume that the maximum amount of time per period is 1. Thus, X= R+× [0,1].
In the special case t = 0,

U0 =
∞

∑
τ=0

β
τU(xτ) =

∞

∑
τ=0

β
τU(cτ ,zτ).

U0 is the function that the household seeks to optimize by choosing a path of consumption and
leisure {ct ,zt}∞

t=0.

Assumption 1. The function U must be neoclassical, i.e.:

• Continuous and twice differentiable.

• Strictly increasing and strictly concave:

Uc(c,z)> 0 >Ucc(c,z),

Uz(c,z)> 0 >Uzz(c,z),

U2
cz <UccUzz.

• Satisfies the Inada conditions:

lim
c→0

Uc = ∞, lim
c→∞

Uc = 0, lim
z→0

Uz = ∞, and lim
z→1

Uz = 0.

3 Production Technology

All firms have access to the same production technology, which implies that the economy has
a representative firm. Factor and product markets are competitive. The aggregate production
function for the single final good is:

Yt = F(Kt ,Lt ,At) (1)

where Kt and Lt represent the demand for capital and labor at time t, and At is the technology
at time t.

Assumption 2 (Continuity, Differentiability, Diminishing and Positive Marginal Products, and
Constant Returns to Scale). The production function F : R3

+ →R+ is twice differentiable in Kt
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and Lt , and satisfies:

FK(Kt ,Lt ,At)≡
∂F(·)

∂K
> 0, FL(Kt ,Lt ,At)≡

∂F(·)
∂L

> 0,

FKK(Kt ,Lt ,At)≡
∂ 2F(·)

∂K2 < 0, FLL(Kt ,Lt ,At)≡
∂ 2F(·)

∂L2 < 0.

Furthermore, F has constant returns to scale in Kt and Lt .

Assumption 3 (Inada Conditions). The production function F : R3
+ → R+ satisfies the Inada

conditions:

lim
K→0

FK(Kt ,Lt ,At) = ∞ and lim
K→∞

FK(Kt ,Lt ,At) = 0, ∀Lt > 0,

lim
L→0

FL(Kt ,Lt ,At) = ∞ and lim
L→∞

FL(Kt ,Lt ,At) = 0, ∀Kt > 0.

These conditions ensure the existence of interior equilibria and imply that all factors of
production are necessary, i.e.,

F(0,Lt ,At) = F(Kt ,0,At) = 0.

A production function that satisfies Assumptions 2 and 3 is called a neoclassical produc-
tion function or technology. In intensive notation (i.e., the production function per worker):

yt ≡
Yt

L
= F

(
Kt

L
,
Lt

L
,At

)
≡ F (kt , ℓt) ,

where At is assumed constant (equal to 1), kt ≡ Kt/L, and ℓt ≡ Lt/L.
Factor prices are given by:

Rt = FK (kt , ℓt) ,

wt = FL (kt , ℓt) .

The time constraint is given by:
ℓt + zt ≤ 1,

where zt and ℓt are interpreted as the fractions of time the household spends on leisure and
work, respectively.

Since the economy is closed, the resource constraint (per worker) is given by:

ct + it ≤ yt . (2)

where it is the investment per worker at time t.
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3.1 Technology and Resource Constraint

The law of motion for the capital stock is:

kt+1 = it +(1−δ )kt . (3)

By combining equations (2) and (3), we obtain:

ct + kt+1 ≤ F (kt , ℓt)+(1−δ )kt .

Finally, we impose the following natural non-negativity constraints:

ct ≥ 0, ℓt ≥ 0, zt ≥ 0, kt ≥ 0.

In equilibrium, the time constraint will be saturated, which implies:

ℓt = 1− zt .

4 Social Planner’s Problem

We begin the analysis of the neoclassical growth model by considering the optimal allocation
of a benevolent social planner. The social planner (SP) chooses the static and intertemporal
allocation of resources in the economy to maximize social welfare. We will later determine the
allocations in a decentralized competitive market environment and show that the two allocations
coincide.

4.1 Formulation of the Social Planner’s Problem

The SP chooses a path {ct , ℓt ,kt+1}∞
t=0 that maximizes utility subject to the economy’s resource

constraint, with a given initial k0 > 0:

max
{ct ,ℓt ,kt+1}∞

t=0

U0 =
∞

∑
t=0

β
tU(ct ,1− ℓt)

s.t. ct + kt+1 ≤ (1−δ )kt +F(kt , ℓt), ∀t ≥ 0,

ct ≥ 0, ℓt ∈ [0,1], kt+1 ≥ 0, ∀t ≥ 0,

k0 > 0 given.

The household will never choose ct = 0, kt+1 = 0, ℓt = 0, or ℓt = 1. Therefore, the con-
straints ct ≥ 0, ℓt ∈ [0,1], kt+1 ≥ 0 will often be ignored in the solution.
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4.2 Lagrangian and First-Order Conditions

Let µt denote the Lagrange multiplier for the resource constraint. The Lagrangian for the social
planner’s problem is written as follows:

L0 =
∞

∑
t=0

β
tU(ct ,1− ℓt)+

∞

∑
t=0

µt [(1−δ )kt +F(kt , ℓt)− kt+1 − ct ].

The first-order conditions (FOCs) are:

∂L0

∂ct
= β

tUc(ct ,1− ℓt)−µt = 0,

∂L0

∂ℓt
=−β

tUz(ct ,1− ℓt)+µtFL(kt , ℓt) = 0,

∂L0

∂kt+1
=−µt +µt+1[(1−δ )+FK(kt+1, ℓt+1)] = 0.

4.3 Characterization of Equilibrium

By combining the above conditions, we obtain:

Uz(ct ,1− ℓt)

Uc(ct ,1− ℓt)
= FL(kt , ℓt), (4)

Uc(ct ,1− ℓt)

βUc(ct+1,1− ℓt+1)
= 1−δ +FK(kt+1, ℓt+1). (5)

Equation (4) means that the marginal rate of substitution between consumption and leisure
equals the marginal product of labor. Equation (5) equates the intertemporal marginal rate of
substitution in consumption to the net marginal product of capital (including depreciation). The
latter condition is called the Euler equation.

4.4 Interpretation of Equilibrium Conditions

Interpretation of equation (4):

Uz(ct ,1− ℓt)︸ ︷︷ ︸
Disutility from working one unit of time

= FL(kt , ℓt)︸ ︷︷ ︸
Income from one unit of work

× Uc(ct ,1− ℓt)︸ ︷︷ ︸
Utility from consuming $1

.

Interpretation of the Euler equation (5):

Uc(ct ,1− ℓt)︸ ︷︷ ︸
Utility lost by saving $1

= [1−δ +FK(kt+1, ℓt+1)]︸ ︷︷ ︸
Return in t +1 on $1 invested in t

× βUc(ct+1,1− ℓt+1)︸ ︷︷ ︸
Utility of consuming $1 in t +1

.
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• Impatience: If β decreases, current consumption increases, and future consumption de-
creases.

• Return on investment: If it increases, more saving occurs for greater future consumption.

4.5 Social Planner’s Problem: Finite Horizon

Suppose the horizon is finite, T < ∞. The social planner’s problem can be written as:

max
{ct ,ℓt ,kt+1}T

t=0

U0 =
T

∑
t=0

β
tU(ct ,1− ℓt)

s.t. ct + kt+1 ≤ (1−δ )kt +F(kt , ℓt), ∀t = 0, · · · ,T,

ct ≥ 0, ℓt ∈ [0,1], kt+1 ≥ 0, ∀t = 0, · · · ,T,

k0 > 0 given.

For kt+1 ≥ 0, the decision becomes non-trivial due to the choice at T . We need to introduce
a multiplier λt for this constraint. The Lagrangian for the social planner’s problem is:

L0 =
T

∑
t=0

β
tU(ct ,1− ℓt)+

T

∑
t=0

µt [(1−δ )kt +F(kt , ℓt)− kt+1 − ct ]+
T

∑
t=0

λtkt+1.

We calculate the FOCs and solve the problem. We can also use the Kuhn-Tucker conditions
for optimization with non-negativity constraints.

4.6 Kuhn-Tucker Theorem

Assume x∗ maximizes the following problem:

max
x∈Rn

f (x)

s.t. g1(x) = b1, . . . ,gM(x) = bM,

h1(x)≤ c1, . . . ,hK(x)≤ cK.

This is a constrained maximization problem with M equality constraints and K inequality
constraints. Assume the constraint qualification condition is satisfied at x∗.

The Lagrangian is then given by:

L = f (x)+
M

∑
m=1

λm(bm −gm(x))+
K

∑
k=1

µk(ck −hk(x)).
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First-order conditions:

∂L(x∗)
∂xn

=
∂ f (x∗)

∂xn
−

M

∑
m=1

λm
∂gm(x∗)

∂xn
−

K

∑
k=1

µk
∂hk(x∗)

∂xn
= 0,

for all n = 1, . . . ,N, and

hk(x)≤ ck, µk ≥ 0, and µk(ck −hk(x∗)) = 0,

for all k = 1, . . . ,K.

4.7 Application to the Social Planner’s Problem

Return to the Social Planner’s (SP) problem. The Kuhn-Tucker conditions with respect to kT+1

are written as:
∂L0

∂kT+1
≥ 0, kT+1 ≥ 0, and

∂L0

∂kT+1
kT+1 = 0.

This implies that λT ≥ 0, kT+1 ≥ 0, and λT kT+1 = 0.
This implies that kT+1 = 0, meaning the shadow value of kT+1 is zero. When T = ∞, the

terminal condition µT kT+1 = 0 is replaced by the transversality condition:

lim
t→∞

µtkt+1 = 0.

This means that the discounted shadow value of capital converges to zero:

lim
t→∞

β
tUc(ct , ℓt)kt+1 = 0.

Proposition 4.1. The path {ct , ℓt ,kt+1}∞
t=0 is a solution to the social planner’s problem if and

only if the following conditions hold for all t ≥ 0:

Uz(ct ,1− ℓt)

Uc(ct ,1− ℓt)
= FL(kt , ℓt),

Uc(ct ,1− ℓt)

βUc(ct+1,1− ℓt+1)
= 1−δ +FK(kt+1, ℓt+1),

kt+1 = F(kt , ℓt)+(1−δ )kt − ct .

The initial condition is:

k0 > 0 (given).

The transversality condition is:

lim
t→∞

β
tUc(ct ,1− ℓt)kt+1 = 0.

Komla Avoumatsodo Page 9/23 School of Economics



University of Northern British Columbia

4.8 Application Example

Consider the following utility function:

u(ct , ℓt) =
c1−σ

t −1
1−σ

− ℓ
γ

t

1+ γ
.

• u is additively separable in consumption and leisure.

• The intertemporal marginal rate of substitution of consumption is:

MRS =
βu′(ct+1)

u′(ct)
.

• The elasticity of intertemporal substitution in consumption is:

∂ (ct+1/ct)

∂MRS
· MRS

ct+1/ct
=

1
σ
.

Consider the following neoclassical production function:

Yt = F(Kt ,Lt) = AKα
t L1−α

t ,

where 0 < α < 1. F is a Cobb-Douglas production function. Output per worker is given by:

yt =
Yt

Lt
= Akα

t ℓ
1−α
t .

Formulate the Social Planner’s problem and solve it to derive the Euler equation in
finite and infinite horizon.

5 Competitive Equilibrium

In the optimal equilibrium, the social planner decides on allocations in the economy. This
means that a central authority determines how resources are distributed to achieve the best
possible outcome for society.

In contrast, a competitive equilibrium is a state where prices and quantities are determined
by the interactions of households and firms in the market. In this scenario:

• Households: They choose quantities of goods and services that maximize their utility
(satisfaction) given their budget constraints. They take prices as given and cannot influ-
ence them.

• Firms: They decide on the level of production and the quantities of inputs (like labor and
capital) that maximize their profit. They also take prices as given.
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• Markets: Prices adjust so that supply equals demand in all markets, ensuring that there
is no excess supply or demand.

5.1 Household Preferences

We consider a representative household, meaning we analyze the behavior of a typical house-
hold rather than individual households. We assume there is no population growth, simplifying
the analysis.

The household’s preferences are represented by a utility function, which measures the satis-
faction or happiness derived from consuming goods and services. The utility function is given
by:

U0 =
∞

∑
t=0

β
tU (ct ,zt) (6)

Here, U0 is the total utility, β is the discount factor (reflecting the household’s preference
for current consumption over future consumption), ct is consumption at time t, and zt is leisure
at time t.

The household’s time constraint is given by:

zt = 1− ℓt (7)

where ℓt is the labor supplied by the household at time t.

5.2 Household Budget Constraint

The household’s budget constraint represents the trade-off between consumption, investment,
and income. It is given by:

ct + it + xt ≤ rtkt +Rtbt +wtℓt +αΠt (8)

Here:

• rt is the rental rate of capital.

• wt is the wage rate.

• Rt is the interest rate on risk-free bonds.

• α is the share of profit Πt paid to the household.

• xt is the investment in bonds.
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The household accumulates capital according to the law of motion:

kt+1 = (1−δ )kt + it (9)

and bonds according to:

bt+1 = bt + xt (10)

In equilibrium, firm profits are zero due to perfect competition, so Πt = 0. The budget
constraint can be rewritten as:

ct + kt+1 +bt+1 ≤ (1−δ + rt)kt +(1+Rt)bt +wtℓt (11)

5.3 Household Debt Limit : No Ponzi Game Condtion

The household faces a non-negativity constraint on capital:

kt+1 ≥ 0 (12)

There is no sign constraint on bonds, meaning the household can either lend or borrow. The
natural borrowing constraint, or "No Ponzi Game" condition, ensures that the household’s net
debt does not exceed the present value of its future income:

−(1+Rt+1)bt+1 ≤ (1−δ + rt+1)kt+1 +
∞

∑
τ=t+1

qτ

qt+1
wτ (13)

where:

qt ≡
1

(1+R0)(1+R1) . . .(1+Rt)
= (1+Rt+1)qt+1 (14)

The arbitrage condition between bonds and capital implies that in equilibrium:

Rt = rt −δ (15)

If Rt < rt −δ , there would be an excess supply of bonds. If Rt > rt −δ , no one would invest
in capital. Therefore, the household is indifferent between bonds and capital.

If we consider total assets at = bt + kt , the budget constraint simplifies to:

ct +at+1 ≤ (1+Rt)at +wtℓt (16)

The natural borrowing constraint becomes:

at+1 ≥ at+1 (17)

Komla Avoumatsodo Page 12/23 School of Economics



University of Northern British Columbia

where:

at+1 ≡− 1
qt

∞

∑
τ=t+1

qτwτ =−
∞

∑
τ=t+1

[
τ

∏
j=t+1

1
1+R j

]
wτ (18)

We assume at is bounded, meaning prices {Rt ,wt}∞

t=0 are such that:

1
qt

∞

∑
τ=t+1

qτwτ < ∞ (19)

5.4 Household Problem

Given a sequence of prices {Rt ,wt}∞

t=0, the household chooses a sequence of {ct , ℓt ,at+1}∞

t=0

to maximize lifetime utility subject to its budget constraints.

max
{ct ,ℓt ,at+1}∞

t=0

U0 =
∞

∑
t=0

β
tU (ct ,1− ℓt)

s.t. ct +at+1 ≤ (1+Rt)at +wtℓt , ∀t

ct ≥ 0, ℓt ∈ [0,1], at+1 ≥ at+1, ∀t

(20)

If µt = β tλt is the Lagrange multiplier for the budget constraint, we can write the La-
grangian as follows:

L0 =
∞

∑
t=0

β
t {U (ct ,1− ℓt)+λt [(1+Rt)at +wtℓt −at+1 − ct ]} (21)

The first-order condition (FOC) with respect to ct is:

∂L0

∂ct
= 0 ⇔ Uc (ct ,zt) = λt (22)

The FOC with respect to ℓt is:

∂L0

∂ℓt
= 0 ⇔ Uz (ct ,zt) = λtwt (23)

These first two FOCs imply that:

Uz (ct ,zt)

Uc (ct ,zt)
= wt (24)

Households equate their marginal rate of substitution between consumption and leisure with
the (common) wage rate.

The Kuhn-Tucker conditions with respect to at+1 are written as:

∂L0

∂at+1
= β

t [−λt +β (1+Rt+1)λt+1]≤ 0 (25)

and
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at+1 ≥ at+1, [λt −β (1+Rt+1)λt+1]
[
at+1 −at+1

]
= 0 (26)

Using λt =Uc (ct ,zt), the Euler condition becomes:

Uc (ct ,zt)≥ β (1+Rt+1)Uc (ct+1,zt+1) (27)

If at+1 > at+1 then Uc (ct ,zt) = β (1+Rt+1)Uc (ct+1,zt+1).
When the borrowing constraint is not binding, households equate their intertemporal marginal

rate of substitution with the (common) return on capital.
If at+1 = at+1 then Uc (ct ,zt)> β (1+Rt+1)Uc (ct+1,zt+1).
In this case, if cτ = zτ = 0 for all τ ≥ t, then we have:

Uc (ct+1,zt+1) = ∞ ⇒Uc (ct ,zt)> ∞ (28)

Which is absurd given that Uc (ct ,zt) < ∞. This shows that the borrowing constraint can
never be binding.

The finite horizon Lagrangian is written as:

L0 =
T

∑
t=0

β
t {U (ct ,1− ℓt)+λt [(1+Rt)at +wtℓt −at+1 − ct ]} (29)

The FOC with respect to at+1 for t = 0,1 · · ·T −1 is:

−λt +β (1+Rt+1)λt+1 ≤ 0 (30)

The Kuhn-Tucker condition with respect to aT+1 is written as:

λT ≥ 0, aT+1 ≥ aT+1, λT
[
aT+1 −aT+1

]
= 0 (31)

By multiplying by β T and letting T tend to infinity, we obtain:

lim
T→∞

β
T

λT
[
aT+1 −aT+1

]
= 0 (32)

If the borrowing constraint is never binding, the equation is written as:

λt = β [1+Rt+1]λt+1 (33)

This implies that:

β
t
λt =

t

∏
τ=1

1
1+Rτ

λ0 = (1+R0)qtλ0 (34)

We can then rewrite the terminal condition as follows:
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lim
t→∞

β
t
λtat+1 = lim

t→∞
β

t
λtat+1 = (1+R0)λ0 lim

t→∞
qtat+1 (35)

But note that:

qtat+1 =
∞

∑
τ=t

qτwτ (36)

Recall that:

qtat+1 =
∞

∑
τ=t

qτwτ , and
∞

∑
τ=0

qτwτ < ∞ (37)

Then:

lim
t→∞

∞

∑
τ=t

qτwτ = 0 (38)

We obtain the more familiar version of the transversality condition:

lim
t→∞

β
t
λtat+1 = 0 (39)

Which is equivalently written as:

lim
t→∞

β
tUc (ct ,1− ℓt)at+1 = 0 (40)

This allows us to reformulate the household problem in the manner of Arrow-Debreu:

max
{ct ,ℓt ,kt+1,bt+1}∞

t=0

∞

∑
t=0

β
tU (ct ,1− ℓt)

s.t.
∞

∑
t=0

qtct ≤ a0 +
∞

∑
t=0

qtwtℓt

(41)

with

a0 +
∞

∑
t=0

qtwt < ∞ (42)

The intertemporal budget constraint is equivalent to the sequence of period-by-period bud-
get constraints and the natural borrowing limit.

Let µ > 0 be the Lagrange multiplier associated with the intertemporal budget. The FOCs
with respect to ct and ℓt give:

β
tUc (ct ,1− ℓt) = µqt (43)

and
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β
tUz (ct ,1− ℓt) = µqtwt (44)

We can verify that these conditions coincide with those derived previously.

5.5 Definition

Suppose the sequence of prices {Rt ,rt ,wt}∞

t=0 satisfies Rt = rt − δ for all t,
∞

∑
t=0

qt < ∞ and

∑
∞
t=0 qtwt < ∞.

The sequence {ct , ℓt ,at}∞

t=0 solves the individual household problem if and only if:

Uz (ct ,1− ℓt)

Uc (ct ,1− ℓt)
= wt ,

Uc (ct ,1− ℓt)

βUc (ct+1,1− ℓt+1)
= 1+Rt , ct +at+1 = (1+Rt)at +wtℓt , ∀ t (45)

with a0 > 0 given and:

lim
t→∞

β
tUc (ct ,1− ℓt)at+1 = 0 (46)

Given {at}∞

t=1, an optimal portfolio is any {kt ,bt}∞

t=1 such that kt ≥ 0 and bt = at − kt .
Recall that leisure zt = 1− ℓt .

5.6 Firms

We assume there is a representative firm. The representative firm employs labor and rents
capital in labor and capital markets. The firm has access to the same technology and produces
a homogeneous good that it sells competitively to households.

Let Kt and Lt be the quantities of capital and labor that the firm employs at time t. The firm
seeks to maximize its profit at time t:

max
{Kt ,Lt}

Πt = F (Kt ,Lt)− rtKt −wtLt (47)

The first-order conditions are written as:

FK (Kt ,Lt) = rt , and FL (Kt ,Lt) = wt (48)

They imply the capital-labor ratio of each firm (Kt/Lt), but not the size of the firm (Lt).
An interior solution to the firms’ problem exists if and only if rt and wt imply the same Kt/Lt .
Since all firms have access to the same technology, they use exactly the same capital-labor
ratio. Given that the function F has constant returns to scale, profit is zero in equilibrium:

Πt = 0 (49)
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5.7 Competitive Equilibrium

The bond market is in equilibrium at date t if and only if:

0 = bt (50)

with bt = at − kt .
The capital market is in equilibrium at date t if and only if:

Kt = kt (51)

The labor market is in equilibrium at date t if and only if:

Lt = ℓt (52)

5.8 Definition of Competitive Equilibrium: Arrow-Debreu Formulation

A (competitive) equilibrium of the economy is a sequence of allocations {ct , ℓt ,kt+1,bt+1,Kt ,Lt}∞

t=0

and prices {pt ,Rt ,rt ,wt}∞

t=0 such that:

(i) Given {pt ,Rt ,rt ,wt}∞

t=0, the path {ct , ℓt ,kt+1,bt+1}∞

t=0 solves the household problem:

max
{ct ,ℓt ,at+1}∞

t=0

U0 =
∞

∑
t=0

β
tU (ct ,1− ℓt)

s.t.
∞

∑
t=0

pt [ct +at+1]≤
∞

∑
t=0

pt [(1+Rt)at +wtℓt ] with at+1 ≥ at+1 ∀t
(53)

(ii) Given (rt ,wt), the pair (Kt ,Lt) maximizes the firm’s profit for each t:

max
{Kt ,Lt}

Πt = F (Kt ,Lt)− rtKt −wtLt (54)

(iii) The bond, capital, and labor markets are in equilibrium at each period, i.e., equations are
satisfied for each date.

5.9 Definition of Competitive Equilibrium: Sequential Formulation

A competitive equilibrium of the economy is a sequence of prices {pt ,Rt ,rt ,wt}∞

t=0 and alloca-
tions

{
(ct , ℓt ,kt+1,bt+1) j∈[0,Lt ]

,(Kt ,Lt)
}∞

t=0
such that:
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(i) Given {Rt ,rt ,wt}∞

t=0, the path {ct , ℓt ,kt+1,bt+1}∞

t=0 solves the household problem:

max
{ct ,ℓt ,at+1}∞

t=0

U0 =
∞

∑
t=0

β
tU (ct ,1− ℓt)

s.t. ct +at+1 ≤ (1+Rt)at +wtℓt ∀t with lim
T→∞

qtat+1 = 0.
(55)

(ii) Given (rt ,wt), the pair (Kt ,Lt) maximizes the firm’s profit for each t:

max
{Kt ,Lt}

Πt = F (Kt ,Lt)− rtKt −wtLt (56)

(iii) The bond, capital, and labor markets are in equilibrium at each period, i.e., equations
(50), (51), and (52) are satisfied for each date.

5.10 Optimal Equilibrium Implies Competitive Equilibrium

Proposition 5.1. The set of competitive equilibrium allocations for the market economy coin-

cides with the set of optimal allocations of the social planner.

The social planner’s optimal plan is a sequence of allocations {ct , ℓt ,kt}∞

t=0 such that:

Uz (ct ,1− ℓt)

Uc (ct ,1− ℓt)
= FL (kt , ℓt) , ∀t ≥ 0, (57)

Uc (ct ,1− ℓt)

βUc (ct+1,1− ℓt+1)
= [1−δ +FK (kt+1, ℓt+1)] , ∀t ≥ 0 (58)

ct + kt+1 = (1−δ )kt +F (kt , ℓt) , ∀t ≥ 0 (59)

k0 > 0 given, and lim
t→∞

β
tUc (ct ,1− ℓt)kt+1 = 0. (60)

Let the price path {Rt ,rt ,wt}∞

t=0 be given by:

rt = FK (kt , ℓt) , (61)

Rt = rt −δ , (62)

wt = FL (kt , ℓt) . (63)

Equations (58), (61), and (62) imply:

Uc (ct ,1− ℓt)

βUc (ct+1,1− ℓt+1)
= 1+Rt . (64)
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The equilibrium is then given by an allocation {ct , ℓt ,kt}∞

t=0 such that, for all t ≥ 0:

Uz (ct ,1− ℓt)

Uc (ct ,1− ℓt)
= FL (kt , ℓt) , (65)

Uc (ct ,1− ℓt)

Uc (ct+1,1− ℓt+1)
= β [1−δ +FK (kt+1, ℓt+1)] , (66)

kt+1 = F (kt , ℓt)+(1−δ )kt − ct , (67)

with k0 > 0 and:

lim
t→∞

β
tUc (ct ,1− ℓt)kt+1 = 0. (68)

Finally, the equilibrium prices are given by:

Rt = FK(kt , ℓt)−δ , rt ≡ FK(kt , ℓt), wt = FL(kt , ℓt). (69)

6 Recursive Competitive Equilibrium

Recursivity : intertemporal maximization is divided into decisions affecting the present and the
future (through state variables).

Instead of sequences, a recursive competitive equilibrium is a set of functions of:

• quantities

• values

• prices

These functions describe the agents’ choices and prices for given initial conditions.

6.1 Social Planner’s Problem

Consider again the social planner’s problem. For any k0 > 0, define:

V (k0)≡ max
{ct ,ℓt ,kt+1}∞

t=0

∞

∑
t=0

β
tU (ct ,1− ℓt) (70)

subject to the constraints:

ct + kt+1 ≤ (1−δ )kt +F (kt , ℓt) , ∀t ≥ 0,

ct , ℓt ,kt+1 ≥ 0, ∀t ≥ 0,

k0 > 0 given.

(71)
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V is called the value function.
The constraint being saturated at equilibrium, we can write:

ct = (1−δ )kt +F (kt , ℓt)− kt+1, ∀t ≥ 0 (72)

The value function is then written as:

V (k0)≡ max
{ℓt ,kt+1}∞

t=0

∞

∑
t=0

β
tH(ℓt ,kt ,kt+1) (73)

with:

H(ℓt ,kt ,kt+1)≡U [(1−δ )kt +F (kt , ℓt)− kt+1,1− ℓt ] (74)

6.2 Bellman Equation

V (k0) = max
{ℓt ,kt+1}∞

t=0

∞

∑
t=0

β
tH(ℓt ,kt ,kt+1) (75)

V (k0) = max
ℓ0,k1

{U (c0,1− ℓ0)+βV (k1)} (76)

So we can write in general:

V (kt) = max{U (ct ,1− ℓt)+βV (kt+1)} (77)

The Bellman equation for the previous planner’s problem is written as:

V (k) = max
{

U(c,1− ℓ)+βV
(
k′
)}

s.t. c+ k′ ≤ (1−δ )k+F(k, ℓ)

k′ ≥ 0, c ∈ [0,F(k, ℓ)], ℓ ∈ [0,1].

(78)

This is a formulation of the problem in recursive form.
Let c(k), ℓ(k), and k′(k) be the values of c, ℓ, and k′ that maximize V (k). These expressions

are also called policy functions.

6.3 Decentralized Problem

Let’s return to the decentralized problem. We use the budget constraint instead of a resource
constraint.

Prices are given by the sequential formulation: {Rt ,wt}∞

t=0 such that:

R = R(K̄)

w = w(K̄)
(79)
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where K̄ is the aggregate capital.
Budget constraint in the recursive problem:

c+K′ = R(K̄)K +w(K̄)ℓ (80)

Two variables (states) determine the consumer’s choice:

• Their capital K

• The aggregate capital K̄, which determines prices

6.4 Household Problem in Recursive Form

The consumer must therefore predict the evolution of aggregate capital. This prediction must
be rational: it corresponds to the true law of motion:

K̄′ = G(K̄) (81)

where G is the result of the economy’s capital accumulation choices (i.e., the representative
consumer in this case).

The household problem in recursive form (Bellman Equation) is then written as:

V (K, K̄) = max
c,ℓ,K′≥0

{
u(c,1− ℓ)+βV

(
K′, K̄′)}

s.t. c+K′ = R(K̄)K +w(K̄)ℓ

K̄′ = G(K̄)

(82)

6.5 Definition: Recursive Competitive Equilibrium

A recursive competitive equilibrium is a set of functions:

• quantities: G(K̄) and g(K, K̄)

• value: V (K, K̄)

• prices: R(K̄) and w(K̄)

such that:

• V (K, K̄) solves the Bellman equation and g(K, K̄) is the associated decision function

• prices are determined competitively:

R(K̄) = FK(K̄,L)+1−δ

w(K̄) = FL(K̄,L)
(83)
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• "consistency":
g(K̄, K̄) = G(K̄) (84)

6.6 Consistency Condition

The consistency condition G(K̄) = g(K̄, K̄) means that the law of motion perceived by the agent
is correct.

In an economy with a single agent, K = K̄ implies G(K̄) = g(K̄, K̄).
With Lt agents:

K̄ =
Lt

∑
i=1

Ki (85)

and

G(K̄) =
N

∑
i=1

gi (Ki, K̄) (86)

Are the markets in equilibrium? In other words, is the following identity respected?

c+K′ = F(K̄,1)+(1−δ )K̄ (87)

6.7 Recursive Equilibrium Condition

The definition of equilibrium tells us that the budget constraint is respected:

c+K′ = R(K̄)K +w(K̄)ℓ (88)

Since all firm revenues go to the consumer, we have:

c+K′ = FK(K̄,1)K +(1−δ )K +Fn(K̄,1)

= F(K̄,1)+(1−δ )K
(89)

(Euler’s theorem.) Finally, K = K̄ and g(K̄, K̄) = G(K̄) imply:

c+ K̄′ = F(K̄,1)+(1−δ )K̄. (90)

6.8 Characterization: Recursive Competitive Equilibrium

Let’s show that the solution to the competitive equilibrium problem is equivalent to those of the
previous equilibria.

The Lagrangian for the social planner’s problem written in recursive form is:
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L =U(c,1− ℓ)+βV
(
k′
)
+λ

[
(1−δ )k+F(k, ℓ)− k′− c

]
(91)

The first-order conditions with respect to c, ℓ, and k′ are:

∂L

∂c
= 0 ⇔Uc(c,z) = λ

∂L

∂ℓ
= 0 ⇔Uz(c,z) = λFL(k, ℓ)

∂L

∂k′
= 0 ⇔ λ = βVk

(
k′
)

(92)

The envelope condition is:

Vk(k) =
∂L

∂k
= λ [1−δ +FK(k, ℓ)] (93)

By combining the two, we conclude:

Uz (ct ,1− ℓt)

Uc (ct ,1− ℓt)
= FL (kt , ℓt) (94)

and

Uc (ct , ℓt)

Uc (ct+1, ℓt+1)
= β [1−δ +FK (kt+1, ℓt+1)] (95)
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