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1 Major Stylized Facts (Revisited)

Figure 1 shows the percentage deviations from the trend for GDP and consumption. It high-
lights how consumption is procyclical and tends to be less volatile than GDP.

Figure 1: Percentage deviations from trend: GDP vs Consumption

Similarly, Figure 2 compares the percentage deviations from the trend for GDP and invest-
ment. Investment is procyclical but typically more volatile than GDP, reflecting the sensitivity
of investment decisions to economic conditions and expectations about the future.

Figure 2: Percentage deviations from trend: GDP vs Investment

Figure 3 shows the relationship between GDP and the price index. The price index can
be countercyclical, meaning it tends to move in the opposite direction of GDP, although this
relationship can be complex and influenced by various factors.
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Figure 3: Percentage deviations from trend: GDP vs Price Index

Figure 4 illustrates the percentage deviations from the trend for GDP and money supply.
The money supply can influence economic activity, but the relationship is not always straight-
forward due to factors like velocity of money and monetary policy. However, the graph shows
that money supply is procyclical with smaller volatility.

Figure 4: Percentage deviations from trend: GDP vs Money Supply

Figure 5 compares GDP and employment. Employment tends to be procyclical, moving in
the same direction as GDP, as firms adjust their labor force in response to changes in economic
activity.

Figure 6 shows the relationship between GDP and productivity. Productivity is a key driver
of economic growth and tends to be procyclical, increasing during economic expansions and
decreasing during recessions.
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Figure 5: Percentage deviations from trend: GDP vs Employment

Figure 6: Percentage deviations from trend: GDP vs Productivity

Summary of Major Stylized Facts. Figure 7 highlights the key stylized facts of business
cycles, including the volatility, comovements, and persistence of various economic variables.

1.1 How Modern Macro Explains Business Cycles

Economies naturally fluctuate over time, and modern macroeconomics seeks to explain these
fluctuations by examining systematic facts. Key aspects that need to be explained include
volatility, which refers to the degree of variation in economic variables; comovements, which
describe how different economic variables move together; persistence, or autocorrelation, which
measures how current economic conditions are related to past conditions; and how expectations
about the future influence current economic decisions.
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Note: From Stephen Williamson, Macroeconomics, Addison-Wesley, New York, 2005.

Figure 7: Stylized facts of business cycles

To address these aspects, dominant theoretical models have been developed. These models
can be broadly categorized into market-clearing models, such as Real Business Cycles (RBC),
and non-market-clearing models, such as the New Keynesian Model (NKM). RBC models
assume that markets always clear, meaning supply equals demand, while NKM models incor-
porate elements like price stickiness and market imperfections.

1.2 RBC versus NKM

Both RBC and NKM models share a common framework that includes dynamic general equi-
librium, stochastic shocks, quantitative (computational) methods, and forward-looking (ratio-
nal) expectations. However, they diverge significantly in their assumptions about information
and prices. RBC models assume that information is complete and prices are flexible, allowing
markets to adjust quickly to changes. In contrast, NKM models assume that information is
incomplete and prices are sticky, meaning they do not adjust immediately to changes, leading
to short-term market imbalances.

2 The Real Business Cycle Model

The essence of the Real Business Cycle (RBC) model involves taking the Ramsey Optimal
growth model and adding shocks to Total Factor Productivity (TFP). Additionally, leisure is
incorporated to account for changes in hours of work. The competitive equilibrium in this
model is determined by the preferences of households, the technology used by firms, and the
policy decisions made by the government. These real factors—preferences, technology, and
policy decisions—play a crucial role in shaping the economy.

In the RBC model, shocks to Total Factor Productivity (TFP) are the fundamental mecha-
nism driving economic fluctuations. These shocks influence the intertemporal substitution of
labor and saving decisions. A major result of the model is that fluctuations in economic activity
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can be seen as an equilibrium outcome. Specifically, individuals tend to work harder and save
more when productivity is high.

The baseline version of the RBC model follows the work of Hansen (1985) and builds
on the seminal paper by Kydland and Prescott (1982). This version provides a foundational
framework for understanding how productivity shocks can lead to business cycle fluctuations.

2.1 Households

Households in the RBC model aim to maximize their utility over time. Utility depends on
consumption (C) and hours worked (N), and intertemporal utility is discounted by a factor β .
The utility function can be expressed as:

u() =
∞

∑
i=0

β
iu(Ct+i,Nt+i) (1)

When introducing uncertainty, future values of consumption and hours worked are not
known with certainty. The expectations operator is used to account for this uncertainty:

u() = Et

[
∞

∑
i=0

β
iu(Ct+i,Nt+i)

]
(2)

A specific form of the utility function used in the RBC model is:

u(C,N) =
C1−σ

1−σ
−θN (3)

Households maximize then their expected utility, which can be written as:

maxEt

[
∞

∑
i=0

β
i

(
C1−σ

t+i

1−σ
−θNt+i

)]
(4)

2.2 Firms: Production

Firms produce goods and services using the following production function:

Yt = AtKα
t N1−α

t (5)

where Yt is the output, At is the Total Factor Productivity (TFP), Kt is the capital, and Nt is the
labor input. Capital accumulation is described by the equation:

Kt = (1−δ )Kt−1 + It (6)

where δ is the depreciation rate and It is the investment. Total Factor Productivity (TFP) follows
the process:

lnAt = (1−ρ) ln Ā+ρ lnAt−1 + εt (7)
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where ρ is the persistence parameter, Ā is the steady-state level of TFP, and εt is a shock to
TFP.

2.3 The Social Planner Solution

To solve for the equilibrium, both decentralized and central planner equilibria are considered.
The social planner maximizes the objective function subject to a resource constraint:

Yt =Ct + It = AtKα
t N1−α

t (8)

where Ct is consumption and It is investment. The Lagrangian for this problem is given by:

L = Et

∞

∑
i=0

β
i

[(
C1−σ

t+i

1−σ
−θNt+i

)
+λt+i

(
At+iKα

t+i−1N1−α

t+i +(1−δ )Kt+i−1 −Ct+i −Kt+i
)]
(9)

To simplify the exposition, we use u(Ct ,Nt) instead of u =
C1−σ

t+i
1−σ

+ θNt+i. In certainty, the
Lagrangian function for periods t and t +1 meanning i = 0 and i = 1 :

L = ...+β
0 [u(Ct ,Nt)+λt

(
AtKα

t−1N1−α
t +(1−δ )Kt−1 −Ct −Kt

)]
+β

1 [u(Ct+1,Nt+1)+λt+1
(
At+1Kα

t N1−α

t+1 +(1−δ )Kt −Ct+1 −Kt+1
)]

+ ... (10)

Now, we derive the first-order conditions (FOCs):

∂L

∂Ct
= β

0 [u′C(Ct)−λt
]
= 0 (11)

∂L

∂Kt
= β

0
λt +β

1
λt+1

[
α

At+1Kα−1
t N1−α

t+1

Kt
+(1−δ )

]
= 0 (12)

∂L

∂Nt
= β

0
[

u′N(Nt)+λt(1−α)
AtKα

t−1Nα
t

Nt

]
= 0 (13)

∂L

∂λt
= β

0 [AtKα
t−1N1−α

t +(1−δ )Kt−1 −Ct −Kt
]
= 0 (14)

The four FOCs can be written as:
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∂L

∂Ct
= β

0 [u′C(Ct)−λt
]
= 0 (15)

∂L

∂Kt
= β

0
λt +β

1
λt+1

[
α

Yt+1

Kt
+(1−δ )

]
= 0 (16)

∂L

∂Nt
= β

0
[

u′N(Nt)+λt(1−α)
Yt

Nt

]
= 0 (17)

∂L

∂λt
= β

0 [AtKα
t−1N1−α

t +(1−δ )Kt−1 −Ct −Kt
]
= 0 (18)

By inserting u′C(Ct) = λt and u′C(Ct+1) = λt+1 into the FOC ∂L
∂Kt

, we get:

u′C(Ct) = β
[
u′C(Ct+1)Rt+1

]
(Euler equation) (19)

Bringing expectations back, the Euler equation with uncertainty is:

Et
[
u′C(Ct)

]
= Et

[
β
(
u′C(Ct+1)Rt+1

)]
(20)

The specific utility function can now be applied:

u′C(Ct+i) =
∂u

∂Ct+i
=C−σ

t+i (21)

The Euler equation appears as:

C−σ
t = βEt

[
C−σ

t+1Rt+1
]

(22)

Notice that from the FOCs ∂L
∂Ct

= 0 and ∂L
∂Nt

= 0, we can derive another result by canceling out
λt :

β
t
[

u′N(Nt)−λt(1−α)
Yt

Nt

]
= 0 (23)

As β t ̸= 0, therefore:

u′N(Nt)−λt(1−α)
Yt

Nt
= 0 (24)

Given that u′N(Nt) = θ and λt = u′C(Ct), we get:

Yt

Nt
=

θ

1−α
Cσ

t (25)

The first-order conditions (FOCs) give us three equations involving five variables (Yt+i, Nt+i,
Ct+i, Rt+i, Kt+i):

Yt

Nt
=

θ

1−α
Cσ

t (26)

C−σ
t = βEt

[
C−σ

t+1Rt+1
]

(27)
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Rt+1 = α
Yt+1

Kt
+(1−δ ) (28)

The system is indeterminate with these three equations. Two further equations are needed to
determine the system:

• The production function

• The capital accumulation equation.

However, these two additional equations introduce two more variables into the system (At , It),
which requires two further equations:

• The national accounting identity

• The TFP process

Now the system can be solved as we have a system of seven equations with seven unknowns
(Yt+i, Nt+i, Ct+i, Rt+i, Kt+i, At+i, It+i). Our seven equations are:

Rt+1 = α

(
Yt+1

Kt

)
+(1−δ ) (29)

C−σ
t = βEt

[
C−σ

t+1Rt+1
]

(30)
Yt

Nt
=

θ

1−α
Cσ

t (31)

Kt = (1−δ )Kt−1 + It (32)

Yt = AtKα
t−1N1−α

t (33)

Yt =Ct + It (34)

lnAt = (1−ρ) ln Ā+ρ lnAt−1 + εt (35)

This forms a nonlinear system of stochastic difference equations, some of which are nonlinear.
Solutions to these systems are extremely difficult, if not impossible, to obtain. A common
approach is to linearize the system in the vicinity of the steady state, which is widely used and
very useful in economics.

3 Log-Linearization

We shall recall a number of points regarding linearization. The system has seven endogenous
variables (Yt+i, Nt+i, Ct+i, Rt+i, Kt+i, At+i, It+i). In steady state, for any variable xt , we get
xt = xt+1 = x̄. The natural way to linearize an equation is to apply logarithms, or ∆ log (first
difference in logs). Remember that ∆ log is approximately equal to a growth rate. We will
apply ∆ log to our system. Although linearization may look very complicated, it is actually
quite simple. We only need to know how to transform the equations of the model into ∆ log
functions.
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3.1 How to Transform Functions in Levels into Log Differences

Transforming functions into log-differences can be illustrated with several cases. First, consider
a linear function: Yt = 2Xt . Applying logs to two consecutive periods, we get:

lnYt = ln2+ lnXt (36)

lnYt+1 = ln2+ lnXt+1 (37)

Therefore, the first difference of logs is:

lnYt+1 − lnYt = (ln2+ lnXt+1)− (ln2+ lnXt) = lnXt+1 − lnXt (38)

In this kind of function, the growth rate of Y , let’s call it gY , is equal to the growth rate of gX :

gY = gX (39)

Next, consider a linear function of two independent variables: Yt = 2XtZt . Applying logs to
two consecutive periods, we get:

gY = gX +gZ (40)

You can prove this result yourself from Introduction Chapter.
Finally, consider a power function: Yt = 2XtZ3

t . Applying logs, we get:

lnYt = ln2+ lnXt +3lnZt (41)

lnYt+1 = ln2+ lnXt+1 +3lnZt+1 (42)

Therefore, the first difference of logs is:

lnYt+1−lnYt =(ln2+lnXt+1+3lnZt+1)−(ln2+lnXt +3lnZt)= lnXt+1−lnXt +3(lnZt+1−lnZt)

(43)
So this power function can be written in ∆ log as:

gY = gX +3gZ (44)

The last function we need to consider is an additive function like Yt+1 = Xt+1 +Zt+1. Here
we can’t apply logs directly. But there is another way:

Yt+1

Yt
=

Xt+1

Xt

Xt

Yt
+

Zt+1

Zt

Zt

Yt
(45)
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Now apply the following:

Yt+1

Yt
= 1+gY ,

Xt+1

Xt
= 1+gX ,

Zt+1

Zt
= 1+gZ (46)

The previous equation can be written as:

(1+gY )Yt = (1+gX)Xt +(1+gZ)Zt (47)

Divide through by Yt and get:

1+gY = (1+gX)
Xt

Yt
+(1+gZ)

Zt

Yt
(48)

Notice that the previous equation can be written as:

1+gY =

(
Xt

Yt
+

Zt

Yt

)
+gX

Xt

Yt
+gZ

Zt

Yt
(49)

Therefore, an additive function like Yt+1 = Xt+1 +Zt+1 can be expressed as:

gY = gX
Xt

Yt
+gZ

Zt

Yt
(50)

Notice that if Z = 2, its growth rate were z = 0, and we would get:

gY = gX
Xt

Yt
(51)

Let’s summarize our results:

Variables in levels Variables in ∆ log
Yt = 2Xt gY = gX

Yt = 2XtZt gY = gX +gZ

Yt = 2XtZ3
t gY = gX +3gZ

Yt+1 = Xt+1 +Zt+1 gY = gX
Xt
Yt
+gZ

Zt
Yt

Yt+1 = Xt+1 +2 gY = gX
Xt
Yt
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3.2 Linearizing the Model in the Vicinity of the Steady State

Transforming our system into a linear one. Let’s use small letters to express the growth rate of
a variable, x = GX then:

C−σ
t = βEt

[
C−σ

t+1Rt+1
]
⇐⇒ ct = Etct+1 −

1
σ

Etrt+1 (52)

Yt

Nt
=

θ

1−α
Cσ

t ⇐⇒ nt = yt −σct (53)

Kt = (1−δ )Kt−1 + It ⇐⇒ kt = (1−δ )kt−1 + it (54)

Yt = AtKα
t−1N1−α

t ⇐⇒ yt = at +αkt−1 +(1−α)nt (55)

Ct + It = Yt ⇐⇒ yt = ct
Ct

Yt
+ it

It
Yt

(56)

Rt = α

(
Yt

Kt−1

)
+(1−δ )⇐⇒ rt = α

(
RtYt

Kt−1

)
(yt − kt−1) (57)

lnAt = (1−ρ) ln Ā+ρ lnAt−1 + εt ⇐⇒ at = ρat−1 + εt (58)

Notice that now our system is: 7 equations, 12 unknowns: (c, r, n, y, k, i, a) plus (K, C, Y , I,
R).
One example. Let us solve the less simple equation of the whole set:

Rt = α

(
Yt

Kt−1

)
+(1−δ ) (59)

Simplify the previous equation by assuming that Zt =
Yt

Kt−1
, and µ = 1−δ :

Rt = αZt +µ (60)

Now apply the rule discussed above and get:

rt = αzt
Zt

Rt
(61)

But as zt = yt − kt−1:

rt = α

(
RtYt

Kt−1

)
(yt − kt−1) (62)

3.3 Determining the Steady State

We can determine the values of K, C, Y , I, R associated with the steady state. Remember that
in the vicinity of the steady state, for any xt , we get xt = xt+1 = x̄, then xt

xt+1
= 1. Let’s start with

the Euler equation. As Ct =Ct+1 = C̄, then:

C−σ
t = βEt

[
C−σ

t+1Rt+1
]

(63)
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If R̄ = β−1, then from the production function:

R̄ = α

(
Ȳ
K̄

)
+(1−δ ) (64)

Therefore:
Ȳ
K̄

=
β−1 − (1−δ )

α
(65)

As we know that R̄ = β−1 and Ȳ
K̄ = β−1−(1−δ )

α
, then:

αR̄
Ȳ
K̄

=
1

β (1−δ )
(66)

Next, from the capital accumulation equation:

K̄ = (1−δ )K̄ + Ī (67)

Therefore:
Ī
K̄

= δ (68)

And:
Ī
Ȳ

=
Ī
K̄

K̄
Ȳ

= φ , for simplicity with φ =
αδ

β−1 − (1−δ )
(69)

Finally:
C̄
Ȳ

= 1− Ī
Ȳ

= 1−φ (70)

Our system of stochastic linear difference equations with rational expectations looks like:

ct = Etct+1 −
1
σ

Etrt+1 (71)

nt = yt −σct (72)

kt = (1−δ )kt−1 +δ it (73)

yt = at +αkt−1 +(1−α)nt (74)

yt = ct(1−φ)+φ it (75)

rt =

[
1

β (1−δ )

]
(yt − kt−1) (76)

at = ρat−1 + εt (77)

With φ = αδ

β−1−(1−δ )
.
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3.4 Numerical Simulation of the Linearized Model

Now we can assign values to the parameters, take the model to the computer, and simulate
the impact of shocks on the endogenous variables. We use a routine for Matlab developed by
Harald Uhlig, now at the University of Chicago. For more variations on the RBC model taken
to the computer, see the work by Jesus Fernandez-Villaverde (University of Pennsylvania) at
https://avoumatsodo.github.io/pages/econ-710-details/.

We calibrate the model with the following parameters: α = 0.4, δ = 0.012, ρ = 0.95,
β = 0.987, σe = 0.07, σ = 1, and N̄ = 1/3 (steady state employment is a third of total time
endowment). See the following figures for the results. The RBC model reproduces relatively

Figure 8: Simulated data (HP-filtered): Output vs Consumption

Figure 9: Simulated data (HP-filtered): Output vs TFP

well several stylized facts of business cycles. Output is nearly as volatile as in the data, while
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Figure 10: Simulated data (HP-filtered): Capital, Interest Rate, TFP and Labor

Figure 11: Impulse responses to a shock in technology

consumption is less volatile than output. Investment, on the other hand, is more volatile, and
persistence is high. The model seems to align well with covariances.

However, there are serious problems with the RBC model. The variability of hours of work
is understated, as well as consumption. Real wages and interest rates are highly procyclical,
which is not consistent with the data. Additionally, the source of negative shocks is unclear.
The model does not account for the role of monetary policy, and fiscal policy is of little help
due to Ricardian equivalence.
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Figure 12: Impulse responses to a one percent deviation in capital

4 Readings

- Eric Sims (2017). Graduate Macro Theory II: The Real Business Cycle Model, University of
Notre Dame, Spring 2017.
- Dirk Krueger (2007). "Quantitative Macroeconomics: An Introduction" Unpublished manuscript,
Department of Economics, University of Pennsylvania.
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